60-Hz Noise and Baseline Drift Reduction in ECG Signal Processing
Electrocardiogram (ECG) signals are obtained by monitoring the electrical activity of the human heart for medical diagnostic purposes [1]. This blog describes a very efficient digital filter used to reduce both 60 Hz AC power line noise and unwanted signal baseline drift that often contaminate ECG signals.
PDF_HERE
We'll first describe the ECG noise reduction filter and then examine the filter's performance in a real-world ECG signal filtering example.Proposed ECG Noise Reduction Digital...
Find Aliased ADC or DAC Harmonics (with animation)
When a sinewave is applied to a data converter (ADC or DAC), device nonlinearities produce harmonics. If a harmonic frequency is greater than the Nyquist frequency, the harmonic appears as an alias. In this case, it is not at once obvious if a given spur is a harmonic, and if so, its order. In this article, we’ll present Matlab code to simulate the data converter nonlinearities and find the harmonic alias frequencies. Note that Analog Devices has an online tool for...
Adaptive Beamforming is like Squeezing a Water Balloon
Adaptive beamforming was first developed in the 1960s for radar and sonar applications. The main idea is that signals can be captured using multiple sensors and the sensor outputs can be combined to enhance the signals propagating from specific directions and attenuate (null out) signals from other directions. It has grown immensely in recent years as processors have become faster and cheaper. Today, adaptive beamforming applications include smart speakers (like the Amazon Echo),...
Compute Images/Aliases of CIC Interpolators/Decimators
Cascade-Integrator-Comb (CIC) filters are efficient fixed-point interpolators or decimators. For these filters, all coefficients are equal to 1, and there are no multipliers. They are typically used when a large change in sample rate is needed. This article provides two very simple Matlab functions that can be used to compute the spectral images of CIC interpolators and the aliases of CIC decimators.
1. CIC InterpolatorsFigure 1 shows three interpolate-by-M...
Exploring Human Hearing Range
Human Hearing RangeIn this post, I'll look at an interesting aspect of Audacity – using it to explore the threshold of human hearing. In my book Digital Signal Processing: A Gentle Introduction with Audio Examples, I go into this topic and I include a side note on the amazing hearing range of our canine companions.
Creating a Test Audio FileAudacity allows for the generation of a variety of test signals. If you click the Generate->Tone menu, it looks something like...
The DSP Online Conference - Right Around the Corner!
It is Sunday night as I write this blog post with a few days to go before the virtual doors of the very first DSP Online Conference open..
It all started with a post in the DSPRelated forum about three months ago. We had just had a blast running the 2020 Embedded Online Conference and we thought it could be fun to organize a smaller event dedicated to the DSP community. So my goal with the post in the forum was to see if...
The Zeroing Sine Family of Window Functions
IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by introducing a class of well behaved window functions that the author believes to be previously unrecognized. The definition and some characteristics are displayed. The heavy math will come in later articles. This is an introduction to the family, and a very special member of it.
This is one of my longer articles. The bulk of the material is in the front half. The...
Design Square-Root Nyquist Filters
In his book on multirate signal processing, harris presents a nifty technique for designing square-root Nyquist FIR filters with good stopband attenuation [1]. In this post, I describe the method and provide a Matlab function for designing the filters. You can find a Matlab function by harris for designing the filters at [2].
BackgroundSingle-carrier modulation, such as QAM, uses filters to limit the bandwidth of the signal. Figure 1 shows a simplified QAM system block...
Make Hardware Great Again
By now you're aware of the collective angst in the US about 5G. Why is the US not a leader in 5G ? Could that also happen -- indeed, is it happening -- in AI ? If we lead in other areas, why not 5G ? What makes it so hard ?
This hand-wringing has reached the highest levels in US government. Recently the Wall Street Journal reported on a DoJ promoted plan 1 to help Cisco buy Ericsson or Nokia, to give the US a leg up in 5G. This is not a new plan,...
A Fast Real-Time Trapezoidal Rule Integrator
This blog presents a computationally-efficient network for computing real‑time discrete integration using the Trapezoidal Rule.
Background
While studying what is called "N-sample Romberg integration" I noticed that such an integration process requires the computation of many individual smaller‑sized integrations using the Trapezoidal Rule integration method [1]. My goal was to create a computationally‑fast real‑time Trapezoidal Rule integration network to increase the processing...
The Discrete Fourier Transform of Symmetric Sequences
Symmetric sequences arise often in digital signal processing. Examples include symmetric pulses, window functions, and the coefficients of most finite-impulse response (FIR) filters, not to mention the cosine function. Examining symmetric sequences can give us some insights into the Discrete Fourier Transform (DFT). An even-symmetric sequence is centered at n = 0 and xeven(n) = xeven(-n). The DFT of xeven(n) is real. Most often, signals we encounter start at n = 0, so they are not strictly speaking even-symmetric. We’ll look at the relationship between the DFT’s of such sequences and those of true even-symmetric sequences.
An s-Plane to z-Plane Mapping Example
While surfing around the Internet recently I encountered the 's-plane to z-plane mapping' diagram shown in Figure 1. At first I thought the diagram was neat because it's a good example of the old English idiom: "A picture is worth a thousand words." However, as I continued to look at Figure 1 I began to detect what I believe are errors in the diagram.
Reader, please take a few moments to see if you detect any errors in Figure 1.
...Dealing With Fixed Point Fractions
Fixed point fractional representation always gives me a headache because I screw it up the first time I try to implement an algorithm. The difference between integer operations and fractional operations is in the overflow. If the representation fits in the fixed point result, you can not tell the difference between fixed point integer and fixed point fractions. When integers overflow, they lose data off the most significant bits. When fractions overflow, they lose data off...
Model a Sigma-Delta DAC Plus RC Filter
Sigma-delta digital-to-analog converters (SD DAC’s) are often used for discrete-time signals with sample rate much higher than their bandwidth. For the simplest case, the DAC output is a single bit, so the only interface hardware required is a standard digital output buffer. Because of the high sample rate relative to signal bandwidth, a very simple DAC reconstruction filter suffices, often just a one-pole RC lowpass. In this article, I present a simple Matlab function that models the combination of a basic SD DAC and one-pole RC filter. This model allows easy evaluation of the overall performance for a given input signal and choice of sample rate, R, and C.
Delay estimation by FFT
Given x=sig(t) and y=ref(t), returns [c, ref(t+delta), delta)] = fitSignal(y, x);:Estimates and corrects delay and scaling factor between two signals Code snippetThis article relates to the Matlab / Octave code snippet: Delay estimation with subsample resolution It explains the algorithm and the design decisions behind it.
IntroductionThere are many DSP-related problems, where an unknown timing between two signals needs to be determined and corrected, for example, radar, sonar,...
The Power Spectrum
Often, when calculating the spectrum of a sampled signal, we are interested in relative powers, and we don’t care about the absolute accuracy of the y axis. However, when the sampled signal represents an analog signal, we sometimes need an accurate picture of the analog signal’s power in the frequency domain. This post shows how to calculate an accurate power spectrum.
Parseval’s theorem [1,2] is a property of the Discrete Fourier Transform (DFT) that...
Polyphase Filters and Filterbanks
ALONG CAME POLY
Polyphase filtering is a computationally efficient structure for applying resampling and filtering to a signal. Most digital filters can be applied in a polyphase format, and it is also possible to create efficient resampling filterbanks using the same theories.
This post will walk through a reference implementation of both the downsampling polyphase filter and a downsampling polyphase filterbank using scipy, numpy, matplotlib, and python. It should also highlight some of...
Music/Audio Signal Processing
Greetings,
This is my blog from the point of view of a music/audio DSP research engineer / educator. It is informal and largely nontechnical because nearly everything I have to say about signal processing is (or will be) somewhere in my four-book series: Mathematics of DFT with Audio Applications, Introduction to Digital Filters, Physical Audio Signal Processing and
Phase or Frequency Shifter Using a Hilbert Transformer
In this article, we’ll describe how to use a Hilbert transformer to make a phase shifter or frequency shifter. In either case, the input is a real signal and the output is a real signal. We’ll use some simple Matlab code to simulate these systems. After that, we’ll go into a little more detail on Hilbert transformer theory and design.
Phase ShifterA conceptual diagram of a phase shifter is shown in Figure 1, where the bold lines indicate complex...
Padé Delay is Okay Today
This article is going to be somewhat different in that I’m not really writing it for the typical embedded systems engineer. Rather it’s kind of a specialized topic, so don’t be surprised if you get bored and move on to something else. That’s fine by me.
Anyway, let’s just jump ahead to the punchline. Here’s a numerical simulation of a step response to a \( p=126, q=130 \) Padé approximation of a time delay:
Impressed? Maybe you should be. This...
Optimizing the Half-band Filters in Multistage Decimation and Interpolation
This blog discusses a not so well-known rule regarding the filtering in multistage decimation and interpolation by an integer power of two. I'm referring to sample rate change systems using half-band lowpass filters (LPFs) as shown in Figure 1. Here's the story.
Figure 1: Multistage decimation and interpolation using half-band filters.
Multistage Decimation – A Very Brief ReviewFigure 2(a) depicts the process of decimation by an integer factor D. That...
Evaluate Window Functions for the Discrete Fourier Transform
The Discrete Fourier Transform (DFT) operates on a finite length time sequence to compute its spectrum. For a continuous signal like a sinewave, you need to capture a segment of the signal in order to perform the DFT. Usually, you also need to apply a window function to the captured signal before taking the DFT [1 - 3]. There are many different window functions and each produces a different approximation of the spectrum. In this post, we’ll present Matlab code that...
A Differentiator With a Difference
Some time ago I was studying various digital differentiating networks, i.e., networks that approximate the process of taking the derivative of a discrete time-domain sequence. By "studying" I mean that I was experimenting with various differentiating filter coefficients, and I discovered a computationally-efficient digital differentiator. A differentiator that, for low fequency signals, has the power of George Foreman's right hand! Before I describe this differentiator, let's review a few...
Free Goodies from Embedded World - Full Inventory and Upcoming Draw Live-Streaming Date
Chances are that you already know that I went to Embedded World a few weeks ago and came back with a bag full of "goodies". Initially, my vision was to do a single draw for one person to win it all, but I didn't expect to come back with so much stuff and so many development kits. Based on your feedback, it seems like you guys agree that It wouldn't make sense for one person to win everything as no-one could make good use of all the boards and there would be lots of...
The Power Spectrum
Often, when calculating the spectrum of a sampled signal, we are interested in relative powers, and we don’t care about the absolute accuracy of the y axis. However, when the sampled signal represents an analog signal, we sometimes need an accurate picture of the analog signal’s power in the frequency domain. This post shows how to calculate an accurate power spectrum.
Parseval’s theorem [1,2] is a property of the Discrete Fourier Transform (DFT) that...
Frequency-Domain Periodicity and the Discrete Fourier Transform
Introduction
Some of the better understood aspects of time-sampled systems are the limitations and requirements imposed by the Nyquist sampling theorem [1]. Somewhat less understood is the periodic nature of the spectra of sampled signals. This article provides some insights into sampling that not only explain the periodic nature of the sampled spectrum, but aliasing, bandlimited sampling, and the so-called "super-Nyquist" or IF sampling. The approaches taken here include both mathematical...
Time Machine, Anyone?
Abstract: Dispersive linear systems with negative group delay have caused much confusion in the past. Some claim that they violate causality, others that they are the cause of superluminal tunneling. Can we really receive messages before they are sent? This article aims at pouring oil in the fire and causing yet more confusion :-).
IntroductionIn this article we reproduce the results of a physical experiment...
The Most Interesting FIR Filter Equation in the World: Why FIR Filters Can Be Linear Phase
This blog discusses a little-known filter characteristic that enables real- and complex-coefficient tapped-delay line FIR filters to exhibit linear phase behavior. That is, this blog answers the question:
What is the constraint on real- and complex-valued FIR filters that guarantee linear phase behavior in the frequency domain?I'll declare two things to convince you to continue reading.
Declaration# 1: "That the coefficients must be symmetrical" is not a correct
Computing Large DFTs Using Small FFTs
It is possible to compute N-point discrete Fourier transforms (DFTs) using radix-2 fast Fourier transforms (FFTs) whose sizes are less than N. For example, let's say the largest size FFT software routine you have available is a 1024-point FFT. With the following trick you can combine the results of multiple 1024-point FFTs to compute DFTs whose sizes are greater than 1024.
The simplest form of this idea is computing an N-point DFT using two N/2-point FFT operations. Here's how the trick...
Free Goodies from Embedded World - What to Do Next?
I told you I would go on a hunt for free stuff at Embedded World in order to build a bundle for someone to win.
New Blog Section!
By now, chances are you have noticed the new blogs section (you are actually in it right now!).
Following an email I sent to the members of the site, a few weeks ago, asking for dsp engineers willing to blog here, I received around 50 propositions. I have selected an initial set of 10 bloggers (that I will soon introduce into a seperate post) and I am currently in the process of creating their accounts. Markus and Parth have already...
New Discussion Group: DSP & FPGA
I have just created a new discussion group for engineers implementing DSP functions on FPGAs. The creation of this group has been on my todo list for a long time. If you want to join the group, send a blank email to: fpgadsp-subscribe@yahoogroups.com
As usual, it should take a few weeks before there are enough members for interesting discussions to get started.