DSPRelated.com

Pentagon Construction Using Complex Numbers

Cedron Dawg October 13, 2023

A method for constructing a pentagon using a straight edge and a compass is deduced from the complex values of the Fifth Roots of Unity. Analytic values for the points are also derived.


Exploring Human Hearing Range

Stephen Morris October 31, 20204 comments
Human Hearing Range

In this post, I'll look at an interesting aspect of Audacity – using it to explore the threshold of human hearing. In my book Digital Signal Processing: A Gentle Introduction with Audio Examples, I go into this topic and I include a side note on the amazing hearing range of our canine companions.

Creating a Test Audio File

Audacity allows for the generation of a variety of test signals. If you click the Generate->Tone menu, it looks something like...


A Fast Real-Time Trapezoidal Rule Integrator

Rick Lyons June 13, 20204 comments

This blog presents a computationally-efficient network for computing real‑time discrete integration using the Trapezoidal Rule.

Background

While studying what is called "N-sample Romberg integration" I noticed that such an integration process requires the computation of many individual smaller‑sized integrations using the Trapezoidal Rule integration method [1]. My goal was to create a computationally‑fast real‑time Trapezoidal Rule integration network to increase the processing...


Digging into an Audio Signal and the DSP Process Pipeline

Stephen Morris March 9, 20206 comments
In this post, I'll look at the benefits of using multiple perspectives when handling signals.A Pre-existing Audio File

Let's say we have an audio file of interest. Let's load it into Audacity and zoom in a little (using View → Zoom → Zoom In, multiple times). The figure illustrates the audio signal: just a basic single-tone signal.

By continuing to zoom into the signal, we eventually get to the point of seeing individual samples as illustrated below. Notice that I've marked one...


Take Control of Noise with Spectral Averaging

Sam Shearman April 20, 20183 comments

Most engineers have seen the moment-to-moment fluctuations that are common with instantaneous measurements of a supposedly steady spectrum. You can see these fluctuations in magnitude and phase for each frequency bin of your spectrogram. Although major variations are certainly reason for concern, recall that we don’t live in an ideal, noise-free world. After verifying the integrity of your measurement setup by checking connections, sensors, wiring, and the like, you might conclude that the...


There's No End to It -- Matlab Code Plots Frequency Response above the Unit Circle

Neil Robertson October 23, 20179 comments
Reference [1] has some 3D plots of frequency response magnitude above the unit circle in the Z-plane.  I liked them enough that I wrote a Matlab function to plot the response of any digital filter this way.  I’m not sure how useful these plots are, but they’re fun to look at. The Matlab code is listed in the Appendix. 

This post is available in PDF format for easy...


Exact Near Instantaneous Frequency Formulas Best at Zero Crossings

Cedron Dawg July 20, 2017
Introduction

This is an article that is the last of my digression from trying to give a better understanding of the Discrete Fourier Transform (DFT). It is along the lines of the last two.

In those articles, I presented exact formulas for calculating the frequency of a pure tone signal as instantaneously as possible in the time domain. Although the formulas work for both real and complex signals (something that does not happen with frequency domain formulas), for real signals they...


Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 2)

Cedron Dawg June 11, 20174 comments
Introduction

This is an article that is a continuation of a digression from trying to give a better understanding of the Discrete Fourier Transform (DFT). It is recommended that my previous article "Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 1)"[1] be read first as many sections of this article are directly dependent upon it.

A second family of formulas for calculating the frequency of a single pure tone in a short interval in the time domain is presented. It...


How to Find a Fast Floating-Point atan2 Approximation

Nic Taylor May 26, 201716 comments
Context Over a short period of time, I came across nearly identical approximations of the two parameter arctangent function, atan2, developed by different companies, in different countries, and even in different decades. Fascinated with how the coefficients used in these approximations were derived, I set out to find them. This atan2 implementation is based around a rational approximation of arctangent on the domain -1 to 1:

$$ atan(z) \approx \dfrac{z}{1.0 +...


Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 1)

Cedron Dawg May 12, 2017
Introduction

This is an article that is a another digression from trying to give a better understanding of the Discrete Fourier Transform (DFT). Although it is not as far off as the last blog article.

A new family of formulas for calculating the frequency of a single pure tone in a short interval in the time domain is presented. They are a generalization of Equation (1) from Rick Lyons' recent blog article titled "Sinusoidal Frequency Estimation Based on Time-Domain Samples"[1]. ...


Computing FFT Twiddle Factors

Rick Lyons August 8, 201019 comments

Some days ago I read a post on the comp.dsp newsgroup and, if I understood the poster's words, it seemed that the poster would benefit from knowing how to compute the twiddle factors of a radix-2 fast Fourier transform (FFT).

Then, later it occurred to me that it might be useful for this blog's readers to be aware of algorithms for computing FFT twiddle factors. So,... what follows are two algorithms showing how to compute the individual twiddle factors of an N-point decimation-in-frequency...


Handling Spectral Inversion in Baseband Processing

Eric Jacobsen February 11, 200811 comments

The problem of "spectral inversion" comes up fairly frequently in the context of signal processing for communication systems. In short, "spectral inversion" is the reversal of the orientation of the signal bandwidth with respect to the carrier frequency. Rick Lyons' article on "Spectral Flipping" at http://www.dsprelated.com/showarticle/37.php discusses methods of handling the inversion (as shown in Figure 1a and 1b) at the signal center frequency. Since most communication systems process...


Python scipy.signal IIR Filtering: An Example

Christopher Felton May 19, 2013
Introduction

In the last posts I reviewed how to use the Python scipy.signal package to design digital infinite impulse response (IIR) filters, specifically, using the iirdesign function (IIR design I and IIR design II ).  In this post I am going to conclude the IIR filter design review with an example.

Previous posts:


Delay estimation by FFT

Markus Nentwig September 22, 200750 comments
Given x=sig(t) and y=ref(t), returns [c, ref(t+delta), delta)] = fitSignal(y, x);:Estimates and corrects delay and scaling factor between two signals Code snippet

This article relates to the Matlab / Octave code snippet: Delay estimation with subsample resolution It explains the algorithm and the design decisions behind it.

Introduction

There are many DSP-related problems, where an unknown timing between two signals needs to be determined and corrected, for example, radar, sonar,...


How to Find a Fast Floating-Point atan2 Approximation

Nic Taylor May 26, 201716 comments
Context Over a short period of time, I came across nearly identical approximations of the two parameter arctangent function, atan2, developed by different companies, in different countries, and even in different decades. Fascinated with how the coefficients used in these approximations were derived, I set out to find them. This atan2 implementation is based around a rational approximation of arctangent on the domain -1 to 1:

$$ atan(z) \approx \dfrac{z}{1.0 +...


Understanding and Implementing the Sliding DFT

Eric Jacobsen April 23, 201511 comments
Introduction

In many applications the detection or processing of signals in the frequency domain offers an advantage over performing the same task in the time-domain.   Sometimes the advantage is just a simpler or more conceptually straightforward algorithm, and often the largest barrier to working in the frequency domain is the complexity or latency involved in the Fast Fourier Transform computation.   If the frequency-domain data must be updated frequently in a...


Linear-phase DC Removal Filter

Rick Lyons March 30, 200826 comments

This blog describes several DC removal networks that might be of interest to the dsprelated.com readers.

Back in August 2007 there was a thread on the comp.dsp newsgroup concerning the process of removing the DC (zero Hz) component from a time-domain sequence [1]. Discussed in that thread was the notion of removing a signal's DC bias by subtracting the signal's moving average from that signal, as shown in Figure 1(a).

Figure 1.

At first I thought...


The Number 9, Not So Magic After All

Rick Lyons October 1, 20146 comments

This blog is not about signal processing. Rather, it discusses an interesting topic in number theory, the magic of the number 9. As such, this blog is for people who are charmed by the behavior and properties of numbers.

For decades I've thought the number 9 had tricky, almost magical, qualities. Many people feel the same way. I have a book on number theory, whose chapter 8 is titled "Digits — and the Magic of 9", that discusses all sorts of interesting mathematical characteristics of the...


A Differentiator With a Difference

Rick Lyons November 3, 200712 comments

Some time ago I was studying various digital differentiating networks, i.e., networks that approximate the process of taking the derivative of a discrete time-domain sequence. By "studying" I mean that I was experimenting with various differentiating filter coefficients, and I discovered a computationally-efficient digital differentiator. A differentiator that, for low fequency signals, has the power of George Foreman's right hand! Before I describe this differentiator, let's review a few...


Computing Large DFTs Using Small FFTs

Rick Lyons June 23, 200821 comments

It is possible to compute N-point discrete Fourier transforms (DFTs) using radix-2 fast Fourier transforms (FFTs) whose sizes are less than N. For example, let's say the largest size FFT software routine you have available is a 1024-point FFT. With the following trick you can combine the results of multiple 1024-point FFTs to compute DFTs whose sizes are greater than 1024.

The simplest form of this idea is computing an N-point DFT using two N/2-point FFT operations. Here's how the trick...