## Adaptive Beamforming is like Squeezing a Water Balloon

Adaptive beamforming was first developed in the 1960s for radar and sonar applications. The main idea is that signals can be captured using multiple sensors and the sensor outputs can be combined to enhance the signals propagating from specific directions and attenuate (null out) signals from other directions. It has grown immensely in recent years as processors have become faster and cheaper. Today, adaptive beamforming applications include smart speakers (like the Amazon Echo),...

## Make Hardware Great Again

By now you're aware of the collective angst in the US about 5G. Why is the US not a leader in 5G ? Could that also happen -- indeed, is it happening -- in AI ? If we lead in other areas, why not 5G ? What makes it so hard ?

This hand-wringing has reached the highest levels in US government. Recently the Wall Street Journal reported on a DoJ promoted plan 1 to help Cisco buy Ericsson or Nokia, to give the US a leg up in 5G. This is not a new plan,...

## Polar Coding Notes: A Simple Proof

For any B-DMC $W$, the channels $\{W_N^{(i)}\}$ polarize in the sense that, for any fixed $\delta \in (0, 1)$, as $N$ goes to infinity through powers of two, the fraction of indices $i \in \{1, \dots, N\}$ for which $I(W_N^{(i)}) \in (1 − \delta, 1]$ goes to $I(W)$ and the fraction for which $I(W_N^{(i)}) \in [0, \delta)$ goes to $1−I(W)^{[1]}$.

Mrs. Gerber’s Lemma

Mrs. Gerber’s Lemma provides a lower bound on the entropy of the modulo-$2$ sum of two binary random...

## Off Topic: Refraction in a Varying Medium

IntroductionThis article is another digression from a better understanding of the DFT. In fact, it is a digression from DSP altogether. However, since many of the readers here are Electrical Engineers and other folks who are very scientifically minded, I hope this article is of interest. A differential vector equation is derived for the trajectory of a point particle in a field of varying index of refraction. This applies to light, of course, but since it is a purely theoretical...

## There and Back Again: Time of Flight Ranging between Two Wireless Nodes

With the growth in the Internet of Things (IoT) products, the number of applications requiring an estimate of range between two wireless nodes in indoor channels is growing very quickly as well. Therefore, localization is becoming a red hot market today and will remain so in the coming years.

One question that is perplexing is that many companies now a days are offering cm level accurate solutions using RF signals. The conventional wireless nodes usually implement synchronization...

## A Beginner's Guide to OFDM

In the recent past, high data rate wireless communications is often considered synonymous to an Orthogonal Frequency Division Multiplexing (OFDM) system. OFDM is a special case of multi-carrier communication as opposed to a conventional single-carrier system.

The concepts on which OFDM is based are so simple that almost everyone in the wireless community is a technical expert in this subject. However, I have always felt an absence of a really simple guide on how OFDM works which can...

## Minimum Shift Keying (MSK) - A Tutorial

Minimum Shift Keying (MSK) is one of the most spectrally efficient modulation schemes available. Due to its constant envelope, it is resilient to non-linear distortion and was therefore chosen as the modulation technique for the GSM cell phone standard.

MSK is a special case of Continuous-Phase Frequency Shift Keying (CPFSK) which is a special case of a general class of modulation schemes known as Continuous-Phase Modulation (CPM). It is worth noting that CPM (and hence CPFSK) is a...

## Digital Envelope Detection: The Good, the Bad, and the Ugly

Recently I've been thinking about the process of envelope detection. Tutorial information on this topic is readily available but that information is spread out over a number of DSP textbooks and many Internet web sites. The purpose of this blog is to summarize various digital envelope detection methods in one place.

Here I focus on envelope detection as it is applied to an amplitude-fluctuating sinusoidal signal where the positive-amplitude fluctuations (the sinusoid's envelope)...

## Amplitude modulation and the sampling theorem

I am working on the 11th and probably final chapter of Think DSP, which follows material my colleague Siddhartan Govindasamy developed for a class at Olin College. He introduces amplitude modulation as a clever way to sneak up on the Nyquist–Shannon sampling theorem.

Most of the code for the chapter is done: you can check it out in this IPython notebook. I haven't written the text yet, but I'll outline it here, and paste in the key figures.

Convolution...

## Analytic Signal

In communication theory and modulation theory we always deal with two phases: In-phase (I) and Quadrature-phase (Q). The question that I will discuss in this blog is that why we use two phases and not more.

## A Quadrature Signals Tutorial: Complex, But Not Complicated

Introduction Quadrature signals are based on the notion of complex numbers and perhaps no other topic causes more heartache for newcomers to DSP than these numbers and their strange terminology of j operator, complex, imaginary, real, and orthogonal. If you're a little unsure of the physical meaning of complex numbers and the j = √-1 operator, don't feel bad because you're in good company. Why even Karl Gauss, one the world's greatest mathematicians, called the j-operator the "shadow of...

## Minimum Shift Keying (MSK) - A Tutorial

Minimum Shift Keying (MSK) is one of the most spectrally efficient modulation schemes available. Due to its constant envelope, it is resilient to non-linear distortion and was therefore chosen as the modulation technique for the GSM cell phone standard.

MSK is a special case of Continuous-Phase Frequency Shift Keying (CPFSK) which is a special case of a general class of modulation schemes known as Continuous-Phase Modulation (CPM). It is worth noting that CPM (and hence CPFSK) is a...

## Digital Envelope Detection: The Good, the Bad, and the Ugly

Recently I've been thinking about the process of envelope detection. Tutorial information on this topic is readily available but that information is spread out over a number of DSP textbooks and many Internet web sites. The purpose of this blog is to summarize various digital envelope detection methods in one place.

Here I focus on envelope detection as it is applied to an amplitude-fluctuating sinusoidal signal where the positive-amplitude fluctuations (the sinusoid's envelope)...

## A Beginner's Guide to OFDM

In the recent past, high data rate wireless communications is often considered synonymous to an Orthogonal Frequency Division Multiplexing (OFDM) system. OFDM is a special case of multi-carrier communication as opposed to a conventional single-carrier system.

The concepts on which OFDM is based are so simple that almost everyone in the wireless community is a technical expert in this subject. However, I have always felt an absence of a really simple guide on how OFDM works which can...

## Handling Spectral Inversion in Baseband Processing

The problem of "spectral inversion" comes up fairly frequently in the context of signal processing for communication systems. In short, "spectral inversion" is the reversal of the orientation of the signal bandwidth with respect to the carrier frequency. Rick Lyons' article on "Spectral Flipping" at http://www.dsprelated.com/showarticle/37.php discusses methods of handling the inversion (as shown in Figure 1a and 1b) at the signal center frequency. Since most communication systems process...

## Understanding the 'Phasing Method' of Single Sideband Demodulation

There are four ways to demodulate a transmitted single sideband (SSB) signal. Those four methods are:

- synchronous detection,
- phasing method,
- Weaver method, and
- filtering method.

Here we review synchronous detection in preparation for explaining, in detail, how the phasing method works. This blog contains lots of preliminary information, so if you're already familiar with SSB signals you might want to scroll down to the 'SSB DEMODULATION BY SYNCHRONOUS DETECTION'...

## Understanding and Relating E_{b}/N_{o}, SNR, and other Power Efficiency Metrics

Introduction

Evaluating the performance of communication systems, and wireless systems in particular, usually involves quantifying some performance metric as a function of Signal-to-Noise-Ratio (SNR) or some similar measurement. Many systems require performance evaluation in multipath channels, some in Doppler conditions and other impairments related to mobility. Some have interference metrics to measure against, but nearly all include noise power as an impairment. Not all systems are...

## Frequency Dependence in Free Space Propagation

Introduction

It seems to be fairly common knowledge, even among practicing professionals, that the efficiency of propagation of wireless signals is frequency dependent. Generally it is believed that lower frequencies are desirable since pathloss effects will be less than they would be at higher frequencies. As evidence of this, the Friis Transmission Equation[i] is often cited, the general form of which is usually written as:

Pr = Pt Gt Gr ( λ / 4πd )2 (1)

where the...

## Pulse Shaping in Single-Carrier Communication Systems

Some common conceptual hurdles for beginning communications engineers have to do with "Pulse Shaping" or the closely-related, even synonymous, topics of "matched filtering", "Nyquist filtering", "Nyquist pulse", "pulse filtering", "spectral shaping", etc. Some of the confusion comes from the use of terms like "matched filter" which has a broader meaning in the more general field of signal processing or detection theory. Likewise "Raised Cosine" has a different meaning or application in this...

## Adaptive Beamforming is like Squeezing a Water Balloon

Adaptive beamforming was first developed in the 1960s for radar and sonar applications. The main idea is that signals can be captured using multiple sensors and the sensor outputs can be combined to enhance the signals propagating from specific directions and attenuate (null out) signals from other directions. It has grown immensely in recent years as processors have become faster and cheaper. Today, adaptive beamforming applications include smart speakers (like the Amazon Echo),...

## A Quadrature Signals Tutorial: Complex, But Not Complicated

Introduction Quadrature signals are based on the notion of complex numbers and perhaps no other topic causes more heartache for newcomers to DSP than these numbers and their strange terminology of j operator, complex, imaginary, real, and orthogonal. If you're a little unsure of the physical meaning of complex numbers and the j = √-1 operator, don't feel bad because you're in good company. Why even Karl Gauss, one the world's greatest mathematicians, called the j-operator the "shadow of...

## Understanding the 'Phasing Method' of Single Sideband Demodulation

There are four ways to demodulate a transmitted single sideband (SSB) signal. Those four methods are:

- synchronous detection,
- phasing method,
- Weaver method, and
- filtering method.

Here we review synchronous detection in preparation for explaining, in detail, how the phasing method works. This blog contains lots of preliminary information, so if you're already familiar with SSB signals you might want to scroll down to the 'SSB DEMODULATION BY SYNCHRONOUS DETECTION'...

## Minimum Shift Keying (MSK) - A Tutorial

Minimum Shift Keying (MSK) is one of the most spectrally efficient modulation schemes available. Due to its constant envelope, it is resilient to non-linear distortion and was therefore chosen as the modulation technique for the GSM cell phone standard.

MSK is a special case of Continuous-Phase Frequency Shift Keying (CPFSK) which is a special case of a general class of modulation schemes known as Continuous-Phase Modulation (CPM). It is worth noting that CPM (and hence CPFSK) is a...

## Digital Envelope Detection: The Good, the Bad, and the Ugly

Recently I've been thinking about the process of envelope detection. Tutorial information on this topic is readily available but that information is spread out over a number of DSP textbooks and many Internet web sites. The purpose of this blog is to summarize various digital envelope detection methods in one place.

Here I focus on envelope detection as it is applied to an amplitude-fluctuating sinusoidal signal where the positive-amplitude fluctuations (the sinusoid's envelope)...

## Handling Spectral Inversion in Baseband Processing

The problem of "spectral inversion" comes up fairly frequently in the context of signal processing for communication systems. In short, "spectral inversion" is the reversal of the orientation of the signal bandwidth with respect to the carrier frequency. Rick Lyons' article on "Spectral Flipping" at http://www.dsprelated.com/showarticle/37.php discusses methods of handling the inversion (as shown in Figure 1a and 1b) at the signal center frequency. Since most communication systems process...

## Understanding and Relating E_{b}/N_{o}, SNR, and other Power Efficiency Metrics

Introduction

Evaluating the performance of communication systems, and wireless systems in particular, usually involves quantifying some performance metric as a function of Signal-to-Noise-Ratio (SNR) or some similar measurement. Many systems require performance evaluation in multipath channels, some in Doppler conditions and other impairments related to mobility. Some have interference metrics to measure against, but nearly all include noise power as an impairment. Not all systems are...

## A Beginner's Guide to OFDM

In the recent past, high data rate wireless communications is often considered synonymous to an Orthogonal Frequency Division Multiplexing (OFDM) system. OFDM is a special case of multi-carrier communication as opposed to a conventional single-carrier system.

The concepts on which OFDM is based are so simple that almost everyone in the wireless community is a technical expert in this subject. However, I have always felt an absence of a really simple guide on how OFDM works which can...

## Pulse Shaping in Single-Carrier Communication Systems

Some common conceptual hurdles for beginning communications engineers have to do with "Pulse Shaping" or the closely-related, even synonymous, topics of "matched filtering", "Nyquist filtering", "Nyquist pulse", "pulse filtering", "spectral shaping", etc. Some of the confusion comes from the use of terms like "matched filter" which has a broader meaning in the more general field of signal processing or detection theory. Likewise "Raised Cosine" has a different meaning or application in this...

## Frequency Dependence in Free Space Propagation

Introduction

It seems to be fairly common knowledge, even among practicing professionals, that the efficiency of propagation of wireless signals is frequency dependent. Generally it is believed that lower frequencies are desirable since pathloss effects will be less than they would be at higher frequencies. As evidence of this, the Friis Transmission Equation[i] is often cited, the general form of which is usually written as:

Pr = Pt Gt Gr ( λ / 4πd )2 (1)

where the...

## Understanding Radio Frequency Distortion

OverviewThe topic of this article are the effects of radio frequency distortions on a baseband signal, and how to model them at baseband. Typical applications are use as a simulation model or in digital predistortion algorithms.

IntroductionTransmitting and receiving wireless signals usually involves analog radio frequency circuits, such as power amplifiers in a transmitter or low-noise amplifiers in a receiver.Signal distortion in those circuits deteriorates the link quality. When...