Book Recommendation "What is Mathematics?"
What is Mathematics is a classic, lucidly written survey of mathematics by Courant and Robbins. The first edition was published in 1941! I have only read a portion of it, mainly the chapter on calculus. One page of Courant is worth about five pages of my old college calculus textbook, and it’s a lot more fun to read.
The reader of this book should already be familiar with algebra and trigonometry. For engineers, some worthwhile sections of the book are:
Evaluate Noise Performance of Discrete-Time Differentiators
When it comes to noise, all differentiators are not created equal. Figure 1 shows the magnitude response of two differentiators. They both have a useful bandwidth of a little less than π/8 radians (based on maximum magnitude response error of 2%). Suppose we apply a signal with Gaussian noise to each of these differentiators. The sinusoidal signal with noise is shown in the top of Figure 2. Signal frequency is π/12.5 radians. The output of the so-called...
Off-Topic: A Fluidic Model of the Universe
IntroductionThis article is a followup to my previous article "Off Topic: Refraction in a Varying Medium"[1]. Many of the concepts should be quite familiar and of interest to the readership of this site. In the "Speculations" section of my previous article, I mention the goal of finding a similar differential equation as (18) of [1] for light traveling in gravity. It turns out it is the right equation, but a wrong understanding. As a consequence of trying to solve this puzzle, a new...
Learn About Transmission Lines Using a Discrete-Time Model
We don’t often think about signal transmission lines, but we use them every day. Familiar examples are coaxial cable, Ethernet cable, and Universal Serial Bus (USB). Like it or not, high-speed clock and signal traces on printed-circuit boards are also transmission lines.
While modeling transmission lines is in general a complex undertaking, it is surprisingly simple to model a lossless, uniform line with resistive terminations by using a discrete-time approach. A...
Determination of the transfer function of passive networks with MATLAB Functions
With MATLAB functions, the transfer function of passive networks can be determined relatively easily. The method is explained using the example of a passive low-pass filter of the sixth order, which is shown in Fig.1
Fig.1 Passive low-pass filter of the sixth order
If one tried, as would be logical, to calculate the transfer function starting from the input, it would be quite complicated. On the other hand, if you start from the output, the determination of this function is simple...
A DSP Quiz Question
Here's a DSP Quiz Question that I hope you find mildly interesting
BACKGROUND
Due to the periodic natures an N-point discrete Fourier transform (DFT) sequence and that sequence’s inverse DFT, it is occasionally reasonable to graphically plot either of those sequences as a 3-dimensional (3D) circular plot. For example, Figure 1(a) shows a length-32 x(n) sequence with its 3D circular plot given in Figure 1(b).
HERE'S THE QUIZ QUESTION:
I was reading a paper by an audio DSP engineer where the...The Discrete Fourier Transform and the Need for Window Functions
The Discrete Fourier Transform (DFT) is used to find the frequency spectrum of a discrete-time signal. A computationally efficient version called the Fast Fourier Transform (FFT) is normally used to calculate the DFT. But, as many have found to their dismay, the FFT, when used alone, usually does not provide an accurate spectrum. The reason is a phenomenon called spectral leakage.
Spectral leakage can be reduced drastically by using a window function in conjunction...
The 2021 DSP Online Conference
The 2021 DSP Online Conference is just around the corner and this year again, the program is packed with opportunities for DSP engineers to refresh their DSP skills and learn a few new tricks along the way.
By registering for the conference, not only will you have full access to all talks, workshops, and Q&A sessions at this year's event, but you'll also gain instant access to all talks from last year's...
Modeling Anti-Alias Filters
Digitizing a signal using an Analog to Digital Converter (ADC) usually requires an anti-alias filter, as shown in Figure 1a. In this post, we’ll develop models of lowpass Butterworth and Chebyshev anti-alias filters, and compute the time domain and frequency domain output of the ADC for an example input signal. We’ll also model aliasing of Gaussian noise. I hope the examples make the textbook explanations of aliasing seem a little more real. Of course, modeling of...
In Search of The Fourth Wave
Last year I participated in the first DSP Related online conference, where I presented a short talk called "In Search of The Fourth Wave". It's based on a small mystery I encountered when I was working on Think DSP. As you might know:
A sawtooth wave contains harmonics at integer multiples of the fundamental frequency, and their amplitudes drop off in proportion to 1/f. A square wave contains only odd multiples of the fundamental, but they also drop off...ESC Boston's Videos are Now Up
In my last blog, I told you about my experience at ESC Boston and the few videos that I was planning to produce and publish. Here they are, please have a look and any feedback (positive or negative) is appreciated.
Short HighlightThis is a very short (one minute) montage of some of the footage that I shot at the show & conference. In future shows, I absolutely need to insert clips here and there of engineers saying a few words about the conference (why they...
How the Cooley-Tukey FFT Algorithm Works | Part 4 - Twiddle Factors
The beauty of the FFT algorithm is that it does the same thing over and over again. It treats every stage of the calculation in exactly the same way. However, this. “one-size-fits-all” approach, although elegant and simple, causes a problem. It misaligns samples and introduces phase distortions during each stage of the algorithm. To overcome this, we need Twiddle Factors, little phase correction factors that push things back into their correct positions before continuing onto the next stage.
Handling Spectral Inversion in Baseband Processing
The problem of "spectral inversion" comes up fairly frequently in the context of signal processing for communication systems. In short, "spectral inversion" is the reversal of the orientation of the signal bandwidth with respect to the carrier frequency. Rick Lyons' article on "Spectral Flipping" at http://www.dsprelated.com/showarticle/37.php discusses methods of handling the inversion (as shown in Figure 1a and 1b) at the signal center frequency. Since most communication systems process...
Went 280km/h (174mph) in a Porsche Panamera in Germany!
Those of you who've been following my blog lately already know that I am going through some sort of mid-life crisis that involves going out there to meet people and make videos. It all started with Embedded World early this year, then continued at ESC Boston a couple of months ago and the latest chapter just concluded as I returned from Germany after spending a week at SEGGER's headquarters to produce a video to highlight their 25th anniversary.
Embedded World 2018 - The Interviews
Once again this year, I had the chance to go to Embedded World in Nuremberg Germany. And once again this year, I brought my video equipment to try and capture some of the most interesting things at the show.
Something new this year, I asked Jacob Beningo if he would partner with me in doing interviews with a few vendors. I would operate the camera while Jacob would ask the right questions to the vendors to make them talk about the key products/features that...
How precise is my measurement?
Some might argue that measurement is a blend of skepticism and faith. While time constraints might make you lean toward faith, some healthy engineering skepticism should bring you back to statistics. This article reviews some practical statistics that can help you satisfy one common question posed by skeptical engineers: “How precise is my measurement?” As we’ll see, by understanding how to answer it, you gain a degree of control over your measurement time.
An accurate, precise...Free Goodies from Embedded World - What to Do Next?
I told you I would go on a hunt for free stuff at Embedded World in order to build a bundle for someone to win.
Ancient History
The other day I was downloading an IDE for a new (to me) OS. When I went to compile some sample code, it failed. I went onto a forum, where I was told "if you read the release notes you'd know that the peripheral libraries are in a legacy download". Well damn! Looking back at my previous versions I realized I must have done that and forgotten about it. Everything changes, and keeping up with it takes time and effort.
When I first started with microprocessors we...
SEGGER's 25th Anniversary Video
Chances are you will find this video more interesting to watch if you take five minutes to first read the story of the week I spent at SEGGER's headquarters at the end of June.
The video is only a little more than 2 minutes long. If you decide to watch it, make sure to go full screen and I would really love to read your thoughts about it in the comments down bellow. Do you think a video like this succeeds in making the viewer want to learn more about the company?...
Embedded World 2018 - More Videos!
After the interview videos last week, this week I am very happy to release two more videos taken at Embedded World 2018 and that I am proud of.
For both videos, I made extensive use of my two new toys, a Zhiyun Crane Gimbal and a Sony a6300 camera.
The use of a gimbal like the Zhiyun makes a big difference in terms of making the footage look much more stable and cinematographic.
As for the Sony camera, it takes fantastic slow-motion footage and...
Polyphase filter / Farrows interpolation
Hello,
this article is meant to give a quick overview over polyphase filtering and Farrows interpolation.
A good reference with more depth is for example Fred Harris' paper: http://www.signumconcepts.com/IP_center/paper018.pdf
The task is as follows: Interpolate a band-limited discrete-time signal at a variable offset between samples.In other words:Delay the signal by a given amount with sub-sample accuracy.Both mean the same.
The picture below shows samples (black) representing...
Second Order Discrete-Time System Demonstration
Discrete-time systems are remarkable: the time response can be computed from mere difference equations, and the coefficients ai, bi of these equations are also the coefficients of H(z). Here, I try to illustrate this remarkableness by converting a continuous-time second-order system to an approximately equivalent discrete-time system. With a discrete-time model, we can then easily compute the time response to any input. But note that the goal here is as much to...
Pulse Shaping in Single-Carrier Communication Systems
Some common conceptual hurdles for beginning communications engineers have to do with "Pulse Shaping" or the closely-related, even synonymous, topics of "matched filtering", "Nyquist filtering", "Nyquist pulse", "pulse filtering", "spectral shaping", etc. Some of the confusion comes from the use of terms like "matched filter" which has a broader meaning in the more general field of signal processing or detection theory. Likewise "Raised Cosine" has a different meaning or application in this...
Generating pink noise
In one of his most famous columns for Scientific American, Martin Gardner wrote about pink noise and its relation to fractal music. The article was based on a 1978 paper by Voss and Clarke, which presents, among other things, a simple algorithm for generating pink noise, also known as 1/f noise.
The fundamental idea of the algorithm is to add up several sequences of uniform random numbers that get updated at different rates. The first source gets updated at...
Free Goodies from Embedded World - Full Inventory and Upcoming Draw Live-Streaming Date
Chances are that you already know that I went to Embedded World a few weeks ago and came back with a bag full of "goodies". Initially, my vision was to do a single draw for one person to win it all, but I didn't expect to come back with so much stuff and so many development kits. Based on your feedback, it seems like you guys agree that It wouldn't make sense for one person to win everything as no-one could make good use of all the boards and there would be lots of...
The Number 9, Not So Magic After All
This blog is not about signal processing. Rather, it discusses an interesting topic in number theory, the magic of the number 9. As such, this blog is for people who are charmed by the behavior and properties of numbers.
For decades I've thought the number 9 had tricky, almost magical, qualities. Many people feel the same way. I have a book on number theory, whose chapter 8 is titled "Digits — and the Magic of 9", that discusses all sorts of interesting mathematical characteristics of the...
Linear-phase DC Removal Filter
This blog describes several DC removal networks that might be of interest to the dsprelated.com readers.
Back in August 2007 there was a thread on the comp.dsp newsgroup concerning the process of removing the DC (zero Hz) component from a time-domain sequence [1]. Discussed in that thread was the notion of removing a signal's DC bias by subtracting the signal's moving average from that signal, as shown in Figure 1(a).
Figure 1.
At first I thought...
Frequency Dependence in Free Space Propagation
Introduction
It seems to be fairly common knowledge, even among practicing professionals, that the efficiency of propagation of wireless signals is frequency dependent. Generally it is believed that lower frequencies are desirable since pathloss effects will be less than they would be at higher frequencies. As evidence of this, the Friis Transmission Equation[i] is often cited, the general form of which is usually written as:
Pr = Pt Gt Gr ( λ / 4πd )2 (1)
where the...
An s-Plane to z-Plane Mapping Example
While surfing around the Internet recently I encountered the 's-plane to z-plane mapping' diagram shown in Figure 1. At first I thought the diagram was neat because it's a good example of the old English idiom: "A picture is worth a thousand words." However, as I continued to look at Figure 1 I began to detect what I believe are errors in the diagram.
Reader, please take a few moments to see if you detect any errors in Figure 1.
...Phase or Frequency Shifter Using a Hilbert Transformer
In this article, we’ll describe how to use a Hilbert transformer to make a phase shifter or frequency shifter. In either case, the input is a real signal and the output is a real signal. We’ll use some simple Matlab code to simulate these systems. After that, we’ll go into a little more detail on Hilbert transformer theory and design.
Phase ShifterA conceptual diagram of a phase shifter is shown in Figure 1, where the bold lines indicate complex...
DSP Related Math: Nice Animated GIFs
I was browsing the ECE subreddit lately and found that some of the most popular posts over the last few months have been animated GIFs helping understand some mathematical concepts. I thought there would be some value in aggregating the DSP related gifs on one page.
The relationship between sin, cos, and right triangles: Constructing a square wave with infinite series (see this...DSPRelated and EmbeddedRelated now on Facebook & I will be at EE Live!
I have two news to share with you today.
The first one is that I finally created Facebook pages for DSPRelated.com and EmbeddedRelated (DSPRelated page - EmbeddedRelated page). For a long time I didn't feel that this was something that was needed, but it seems that these days more and more people are using their Facebook account to stay updated with their favorite websites. In any event, if you have a Facebook account, I would greatly appreciate if you could use the next 5 seconds to "like"...
Collaborative Writing Experiment: Your Favorite DSP Websites
You are invited to contribute to the content of this blog post through the magic of Google Docs' real time collaboration feature.
I discovered this tool several months ago when I was looking for a way to coordinate our annual family halloween party (potluck) and avoid the very unpleasant situation of ending up with too much chips and not enough chocolate (first world problem!). It was amusing to keep an eye on the "food you will bring" document we had created for this and watch...
DSPRelated Finally on Twitter!
Hello!
It's been a while since you've heard from me - and there are many reasons why:
1 - I've made a clown of myself (video here)
2 - I've been working on unifying the user management system. You can now participate to the three related sites (DSPRelated, FPGARelated and EmbeddedRelated) with only one account (same login info).
3- I've been working on getting up to speed with social networks and especially Twitter. I have resisted the idea for a while - at 40...
Two jobs
For those of you following closely embeddedrelated and the other related sites, you might have noticed that I have been less active for the last couple of months, and I will use this blog post to explain why. The main reason is that I got myself involved into a project that ended up using a better part of my cpu than I originally thought it would.
edit - video of the event:
I currently have two jobs: one as an electrical/dsp engineer recycled as a web publisher and the other...
Do you like the new Comments System?
I have just finished implementing a new comments system for the blogs. Do you like it?
Please share your thoughts with me by adding a comment.
I'll wait a few days and make sure it works properly and then I'll port it to the code snippets and papers section.
Thanks!
DSP Papers, Articles, Theses, etc
As you may already know, there is a 'Papers and Theses' section on DSPRelated:http://www.dsprelated.com/documents.phpThere are hundreds of DSP Related documents (articles, papers, theses, dissertations, etc) scattered all around the web, and the goal with this section is to find and list as many of those documents as possible in one place. There are, at the moment, a little over 100 documents listed, which I believe is only a small subset of what is available out there, and I need your help...
Code Snippets Suggestions
Despite being only a couple of months old, the Code Snippet section ( DSPRelated.com/code.php ) already contains tens of snippets, thanks to the contributors who have taken the time to share their code.
But let's not stop here - there is room for several hundreds more snippets before the database can be said to cover a decent portion of the DSP field.
To keep the momentum going, I will do two things:
First, I am modifying the rewards program. Instead of...
Latest DSP Books
As you may already know, Rick Lyons has just published a new edition of his highly acclaimed book: "Understanding Digital Signal Processing". This book has been getting very high ratings and positive reviews from the DSP community since the publication of the first edition. The 3rd edition seems to contain more than enough new material to justify replacing your old copy.
Also of possible interest to you, a new DSP book by C. Britton Rorabaugh titled "
Code Snippets Section Now LIVE
The new code sharing section is now live and can be accessed HERE.
Please take a few minutes to rate and/or comment the snippets that you have the expertise to judge.
If you think of some code snippets that you would like to share with the DSP community, please apply to become a contributor HERE.
If you are not aware of the reward program for contributors, your can learn about it HERE.
As always, your comments and suggestions are...


















