A Friendly Introduction to Compressed Sensing

Lawrence J. Zhang

Compared to other signal processing techniques, compressed sensing (or sparse sampling) has caught the interest of many mathematicians, electrical engineers, and computer scientists. The field of compressed sensing is still rapidly evolving. As most papers and textbooks about compressed sensing are at graduate level, the purpose of this paper is to offer a gentler exposure to compressed sensing from a mathematical perspective. By synthesizing my study on compressed sensing as an undergraduate, this thesis covers important concepts in CS such as coherence and restricted isometry property. Several key algorithms in compressed sensing will also be introduced with discussions of their stability, robustness, and performance. In the end, we investigate single-pixel camera as an example of real-world application of compressed sensing.