DSPRelated.com
The 2025 DSP Online Conference

Find Aliased ADC or DAC Harmonics (with animation)

Neil Robertson January 11, 20212 comments

When a sinewave is applied to a data converter (ADC or DAC), device nonlinearities produce harmonics.  If a harmonic frequency is greater than the Nyquist frequency, the harmonic appears as an alias.  In this case, it is not at once obvious if a given spur is a harmonic, and if so, its order.  In this article, we’ll present Matlab code to simulate the data converter nonlinearities and find the harmonic alias frequencies.  Note that Analog Devices has an online tool for...


Compute Images/Aliases of CIC Interpolators/Decimators

Neil Robertson November 1, 20202 comments

Cascade-Integrator-Comb (CIC) filters are efficient fixed-point interpolators or decimators.  For these filters, all coefficients are equal to 1, and there are no multipliers.  They are typically used when a large change in sample rate is needed.  This article provides two very simple Matlab functions that can be used to compute the spectral images of CIC interpolators and the aliases of CIC decimators.

1.  CIC Interpolators

Figure 1 shows three interpolate-by-M...


Design Square-Root Nyquist Filters

Neil Robertson July 13, 2020

In his book on multirate signal processing, harris presents a nifty technique for designing square-root Nyquist FIR filters with good stopband attenuation [1].  In this post, I describe the method and provide a Matlab function for designing the filters.  You can find a Matlab function by harris for designing the filters at [2].

Background

Single-carrier modulation, such as QAM, uses filters to limit the bandwidth of the signal.  Figure 1 shows a simplified QAM system block...


Third-Order Distortion of a Digitally-Modulated Signal

Neil Robertson June 9, 2020
Analog designers are always harping about amplifier third-order distortion.  Why?  In this article, we’ll look at why third-order distortion is important, and simulate a QAM signal with third-order distortion.

In the following analysis, we assume that signal phase at the amplifier output is not a function of amplitude.  With this assumption, the output y of a non-ideal amplifier can be written as a power series of the input signal x:

$$y=...


Second Order Discrete-Time System Demonstration

Neil Robertson April 1, 20202 comments

Discrete-time systems are remarkable:  the time response can be computed from mere difference equations, and the coefficients ai, bi of these equations are also the coefficients of H(z).  Here, I try to illustrate this remarkableness by converting a continuous-time second-order system to an approximately equivalent discrete-time system.  With a discrete-time model, we can then easily compute the time response to any input.  But note that the goal here is as much to...


A Simplified Matlab Function for Power Spectral Density

Neil Robertson March 3, 20204 comments

In an earlier post [1], I showed how to compute power spectral density (PSD) of a discrete-time signal using the Matlab function pwelch [2].  Pwelch is a useful function because it gives the correct output, and it has the option to average multiple Discrete Fourier Transforms (DFTs).  However, a typical function call has five arguments, and it can be hard to remember how to set them all and how they default.

In this post, I create a simplified PSD function by putting a...


Fractional Delay FIR Filters

Neil Robertson February 9, 202017 comments

Consider the following Finite Impulse Response (FIR) coefficients:

b = [b0 b1 b2 b1 b0]

These coefficients form a 5-tap symmetrical FIR filter having constant group delay [1,2] over 0 to fs/2 of:

D = (ntaps – 1)/2 = 2      samples

For a symmetrical filter with an odd number of taps, the group delay is always an integer number of samples, while for one with an even number of taps, the group delay is always an integer + 0.5 samples.  Can we design a filter...


Model Signal Impairments at Complex Baseband

Neil Robertson December 11, 20197 comments

In this article, we develop complex-baseband models for several signal impairments: interfering carrier, multipath, phase noise, and Gaussian noise.  To provide concrete examples, we’ll apply the impairments to a QAM system. The impairment models are Matlab functions that each use at most seven lines of code.  Although our example system is QAM, the models can be used for any complex-baseband signal.

I used a very simple complex-baseband model of a QAM system in my last


Compute Modulation Error Ratio (MER) for QAM

Neil Robertson November 5, 20192 comments

This post defines the Modulation Error Ratio (MER) for QAM signals, and shows how to compute it.  As we’ll see, in the absence of impairments other than noise, the MER tracks the signal’s Carrier-to-Noise Ratio (over a limited range).  A Matlab script at the end of the PDF version of this post computes MER for a simplified QAM-64 system.

Figure 1 is a simplified block diagram of a QAM system.  The transmitter includes a source of QAM symbols, a root-Nyquist...


Plotting Discrete-Time Signals

Neil Robertson September 15, 20195 comments

A discrete-time sinusoid can have frequency up to just shy of half the sample frequency.  But if you try to plot the sinusoid, the result is not always recognizable.  For example, if you plot a 9 Hz sinusoid sampled at 100 Hz, you get the result shown in the top of Figure 1, which looks like a sine.  But if you plot a 35 Hz sinusoid sampled at 100 Hz, you get the bottom graph, which does not look like a sine when you connect the dots.  We typically want the plot of a...


Compute the Frequency Response of a Multistage Decimator

Neil Robertson February 10, 20192 comments

Figure 1a shows the block diagram of a decimation-by-8 filter, consisting of a low-pass finite impulse response (FIR) filter followed by downsampling by 8 [1].  A more efficient version is shown in Figure 1b, which uses three cascaded decimate-by-two filters.  This implementation has the advantages that only FIR 1 is sampled at the highest sample rate, and the total number of filter taps is lower.

The frequency response of the single-stage decimator before downsampling is just...


Canonic Signed Digit (CSD) Representation of Integers

Neil Robertson February 18, 2017

In my last post I presented Matlab code to synthesize multiplierless FIR filters using Canonic Signed Digit (CSD) coefficients.  I included a function dec2csd1.m (repeated here in Appendix A) to convert decimal integers to binary CSD values.  Here I want to use that function to illustrate a few properties of CSD numbers.

In a binary signed-digit number system, we allow each binary digit to have one of the three values {0, 1, -1}.  Thus, for example, the binary value 1 1...


Demonstrating the Periodic Spectrum of a Sampled Signal Using the DFT

Neil Robertson March 9, 201920 comments

One of the basic DSP principles states that a sampled time signal has a periodic spectrum with period equal to the sample rate.  The derivation of can be found in textbooks [1,2].  You can also demonstrate this principle numerically using the Discrete Fourier Transform (DFT).

The DFT of the sampled signal x(n) is defined as:

$$X(k)=\sum_{n=0}^{N-1}x(n)e^{-j2\pi kn/N} \qquad (1)$$

Where

X(k) = discrete frequency spectrum of time sequence x(n)


Compute Modulation Error Ratio (MER) for QAM

Neil Robertson November 5, 20192 comments

This post defines the Modulation Error Ratio (MER) for QAM signals, and shows how to compute it.  As we’ll see, in the absence of impairments other than noise, the MER tracks the signal’s Carrier-to-Noise Ratio (over a limited range).  A Matlab script at the end of the PDF version of this post computes MER for a simplified QAM-64 system.

Figure 1 is a simplified block diagram of a QAM system.  The transmitter includes a source of QAM symbols, a root-Nyquist...


The Discrete Fourier Transform and the Need for Window Functions

Neil Robertson November 15, 20212 comments

The Discrete Fourier Transform (DFT) is used to find the frequency spectrum of a discrete-time signal.  A computationally efficient version called the Fast Fourier Transform (FFT) is normally used to calculate the DFT.  But, as many have found to their dismay, the FFT, when used alone, usually does not provide an accurate spectrum.  The reason is a phenomenon called spectral leakage.

Spectral leakage can be reduced drastically by using a window function in conjunction...


Design IIR Band-Reject Filters

Neil Robertson January 17, 20182 comments

In this post, I show how to design IIR Butterworth band-reject filters, and provide two Matlab functions for band-reject filter synthesis.  Earlier posts covered IIR Butterworth lowpass [1] and bandpass [2] filters.  Here, the function br_synth1.m designs band-reject filters based on null frequency and upper -3 dB frequency, while br_synth2.m designs them based on lower and upper -3 dB frequencies.   I’ll discuss the differences between the two approaches later in this...


ADC Clock Jitter Model, Part 1 – Deterministic Jitter

Neil Robertson April 16, 201819 comments

Analog to digital converters (ADC’s) have several imperfections that affect communications signals, including thermal noise, differential nonlinearity, and sample clock jitter [1, 2].  As shown in Figure 1, the ADC has a sample/hold function that is clocked by a sample clock.  Jitter on the sample clock causes the sampling instants to vary from the ideal sample time.  This transfers the jitter from the sample clock to the input signal.

In this article, I present a Matlab...


DAC Zero-Order Hold Models

Neil Robertson January 21, 20242 comments

This article provides two simple time-domain models of a DAC’s zero-order hold. These models will allow us to find time and frequency domain approximations of DAC outputs, and simulate analog filtering of those outputs. Developing the models is also a good way to learn about the DAC ZOH function.


The Discrete Fourier Transform as a Frequency Response

Neil Robertson February 4, 20238 comments

The discrete frequency response H(k) of a Finite Impulse Response (FIR) filter is the Discrete Fourier Transform (DFT) of its impulse response h(n) [1].  So, if we can find H(k) by whatever method, it should be identical to the DFT of h(n).  In this article, we’ll find H(k) by using complex exponentials, and we’ll see that it is indeed identical to the DFT of h(n).

Consider the four-tap FIR filter in Figure 1, where each block labeled Ts represents a delay of one...


ADC Clock Jitter Model, Part 2 – Random Jitter

Neil Robertson April 22, 20189 comments

In Part 1, I presented a Matlab function to model an ADC with jitter on the sample clock, and applied it to examples with deterministic jitter.  Now we’ll investigate an ADC with random clock jitter, by using a filtered or unfiltered Gaussian sequence as the jitter source.  What we are calling jitter can also be called time jitter, phase jitter, or phase noise.  It’s all the same phenomenon.  Typically, we call it jitter when we have a time-domain representation,...


The 2025 DSP Online Conference