Feedback Controllers - Making Hardware with Firmware. Part I. Introduction
Introduction to the topicThis is the 1st in a series of articles looking at how we can use DSP and Feedback Control Sciences along with some mixed-signal electronics and number-crunching capability (e.g. FPGA), to create arbitrary (within reason) Electrical/Electronic Circuits with real-world connectivity. Of equal importance will be the evaluation of the functionality and performance of a practical design made from modestly-priced state of the art devices.
- Part 1:
Exact Near Instantaneous Frequency Formulas Best at Zero Crossings
IntroductionThis is an article that is the last of my digression from trying to give a better understanding of the Discrete Fourier Transform (DFT). It is along the lines of the last two.
In those articles, I presented exact formulas for calculating the frequency of a pure tone signal as instantaneously as possible in the time domain. Although the formulas work for both real and complex signals (something that does not happen with frequency domain formulas), for real signals they...
SEGGER's 25th Anniversary Video
Chances are you will find this video more interesting to watch if you take five minutes to first read the story of the week I spent at SEGGER's headquarters at the end of June.
The video is only a little more than 2 minutes long. If you decide to watch it, make sure to go full screen and I would really love to read your thoughts about it in the comments down bellow. Do you think a video like this succeeds in making the viewer want to learn more about the company?...
Above-Average Smoothing of Impulsive Noise
In this blog I show a neat noise reduction scheme that has the high-frequency noise reduction behavior of a traditional moving average process but with much better impulsive-noise suppression.
In practice we may be required to make precise measurements in the presence of highly-impulsive noise. Without some sort of analog signal conditioning, or digital signal processing, it can be difficult to obtain stable and repeatable, measurements. This impulsive-noise smoothing trick,...
Went 280km/h (174mph) in a Porsche Panamera in Germany!
Those of you who've been following my blog lately already know that I am going through some sort of mid-life crisis that involves going out there to meet people and make videos. It all started with Embedded World early this year, then continued at ESC Boston a couple of months ago and the latest chapter just concluded as I returned from Germany after spending a week at SEGGER's headquarters to produce a video to highlight their 25th anniversary.
Looking For a Second Toolbox? This One's For Sale
In case you're looking for a second toolbox, this used toolbox is for sale.The blue-enameled steel toolbox measures 13 x 7 x 5 inches and, when opened, has a three-section tray attached to the lid. Showing signs of heavy use, the interior, tray, and exterior have collected a fair amount of dirt and grease and bear many scratches. The bottom of the box is worn from having been slid on rough surfaces.
The toolbox currently resides in Italy. But don't worry, it can be shipped to you....
Embedded Toolbox: Programmer's Calculator
Like any craftsman, I have accumulated quite a few tools during my embedded software development career. Some of them proved to me more useful than others. And these generally useful tools ended up in my Embedded Toolbox. In this blog, I'd like to share some of my tools with you. Today, I'd like to start with my cross-platform Programmer's Calculator called QCalc.
I'm sure that you already have your favorite calculator online or on your smartphone. But can your calculator accept...
Ten Little Algorithms, Part 6: Green’s Theorem and Swept-Area Detection
Other articles in this series:
- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
This article is mainly an excuse to scribble down some cryptic-looking mathematics — Don’t panic! Close your eyes and scroll down if you feel nauseous — and...
Going back to Germany!
A couple of blog posts ago, I wrote that the decision to go to ESC Boston ended up being a great one for many different reasons. I came back from the conference energized and really happy that I went.
These feelings were amplified a few days after my return when I received an email from Rolf Segger, the founder of SEGGER Microcontroller (check out their very new website), asking if I would be interested in visiting their headquarters...
Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 2)
IntroductionThis is an article that is a continuation of a digression from trying to give a better understanding of the Discrete Fourier Transform (DFT). It is recommended that my previous article "Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 1)"[1] be read first as many sections of this article are directly dependent upon it.
A second family of formulas for calculating the frequency of a single pure tone in a short interval in the time domain is presented. It...
The Number 9, Not So Magic After All
This blog is not about signal processing. Rather, it discusses an interesting topic in number theory, the magic of the number 9. As such, this blog is for people who are charmed by the behavior and properties of numbers.
For decades I've thought the number 9 had tricky, almost magical, qualities. Many people feel the same way. I have a book on number theory, whose chapter 8 is titled "Digits — and the Magic of 9", that discusses all sorts of interesting mathematical characteristics of the...
A Simplified Matlab Function for Power Spectral Density
In an earlier post [1], I showed how to compute power spectral density (PSD) of a discrete-time signal using the Matlab function pwelch [2]. Pwelch is a useful function because it gives the correct output, and it has the option to average multiple Discrete Fourier Transforms (DFTs). However, a typical function call has five arguments, and it can be hard to remember how to set them all and how they default.
In this post, I create a simplified PSD function by putting a...
Demonstrating the Periodic Spectrum of a Sampled Signal Using the DFT
One of the basic DSP principles states that a sampled time signal has a periodic spectrum with period equal to the sample rate. The derivation of can be found in textbooks [1,2]. You can also demonstrate this principle numerically using the Discrete Fourier Transform (DFT).
The DFT of the sampled signal x(n) is defined as:
$$X(k)=\sum_{n=0}^{N-1}x(n)e^{-j2\pi kn/N} \qquad (1)$$
Where
X(k) = discrete frequency spectrum of time sequence x(n)
A Table of Digital Frequency Notation
When we read the literature of digital signal processing (DSP) we encounter a number of different, and equally valid, ways to algebraically represent the notion of frequency for discrete-time signals. (By frequency I mean a measure of angular repetitions per unit of time.)
The various mathematical expressions for sinusoidal signals use a number of different forms of a frequency variable and the units of measure (dimensions) of those variables are different. It's sometimes a nuisance to keep...
Using the DFT as a Filter: Correcting a Misconception
I have read, in some of the literature of DSP, that when the discrete Fourier transform (DFT) is used as a filter the process of performing a DFT causes an input signal's spectrum to be frequency translated down to zero Hz (DC). I can understand why someone might say that, but I challenge that statement as being incorrect. Here are my thoughts.
Using the DFT as a Filter It may seem strange to think of the DFT as being used as a filter but there are a number of applications where this is...
Should DSP Undergraduate Students Study z-Transform Regions of Convergence?
Not long ago I presented my 3-day DSP class to a group of engineers at Tektronix Inc. in Beaverton Oregon [1]. After I finished covering my material on IIR filters' z-plane pole locations and filter stability, one of the Tektronix engineers asked a question similar to:
"I noticed that you didn't discuss z-plane regions of convergence here. In my undergraduate DSP class we spent a lot of classroom and homework time on the ...
A Differentiator With a Difference
Some time ago I was studying various digital differentiating networks, i.e., networks that approximate the process of taking the derivative of a discrete time-domain sequence. By "studying" I mean that I was experimenting with various differentiating filter coefficients, and I discovered a computationally-efficient digital differentiator. A differentiator that, for low fequency signals, has the power of George Foreman's right hand! Before I describe this differentiator, let's review a few...
A Fast Real-Time Trapezoidal Rule Integrator
This blog presents a computationally-efficient network for computing real‑time discrete integration using the Trapezoidal Rule.
Background
While studying what is called "N-sample Romberg integration" I noticed that such an integration process requires the computation of many individual smaller‑sized integrations using the Trapezoidal Rule integration method [1]. My goal was to create a computationally‑fast real‑time Trapezoidal Rule integration network to increase the processing...
Exact Near Instantaneous Frequency Formulas Best at Zero Crossings
IntroductionThis is an article that is the last of my digression from trying to give a better understanding of the Discrete Fourier Transform (DFT). It is along the lines of the last two.
In those articles, I presented exact formulas for calculating the frequency of a pure tone signal as instantaneously as possible in the time domain. Although the formulas work for both real and complex signals (something that does not happen with frequency domain formulas), for real signals they...
Third-Order Distortion of a Digitally-Modulated Signal
Analog designers are always harping about amplifier third-order distortion. Why? In this article, we’ll look at why third-order distortion is important, and simulate a QAM signal with third-order distortion.
In the following analysis, we assume that signal phase at the amplifier output is not a function of amplitude. With this assumption, the output y of a non-ideal amplifier can be written as a power series of the input signal x:
$$y=...
Summary of ROC Rules
This is a very short guide on how to find all possible outcomes of a system where Region of Convergence (ROC) and the original signal is not known.
An Efficient Lowpass Filter in Octave
This article describes an efficient linear-phase lowpass FIR filter, coded using the Octave programming language. The intention is to focus on the implementation in software, but references are provided for those who wish to undertake further study of interpolated FIR filters [1]- [3].
The input signal is processed as a vector of samples (eg from a .wav file), which are converted to a matrix format. The complete filter is thus referred to as a Matrix IFIR or...
Crowdfunding Articles?
Many of you have the knowledge and talent to write technical articles that would benefit the EE community. What is missing for most of you though, and very understandably so, is the time and motivation to do it.
But what if you could make some money to compensate for your time spent on writing the article(s)? Would some of you find the motivation and make the time?
I am thinking of implementing a system/mechanism that would allow the EE community to...
Simple Concepts Explained: Fixed-Point
IntroductionMost signal processing intensive applications on FPGA are still implemented relying on integer or fixed-point arithmetic. It is not easy to find the key ideas on quantization, fixed-point and integer arithmetic. In a series of articles, I aim to clarify some concepts and add examples on how things are done in real life. The ideas covered are the result of my professional experience and hands-on projects.
In this article I will present the most fundamental question you...
ADC Clock Jitter Model, Part 2 – Random Jitter
In Part 1, I presented a Matlab function to model an ADC with jitter on the sample clock, and applied it to examples with deterministic jitter. Now we’ll investigate an ADC with random clock jitter, by using a filtered or unfiltered Gaussian sequence as the jitter source. What we are calling jitter can also be called time jitter, phase jitter, or phase noise. It’s all the same phenomenon. Typically, we call it jitter when we have a time-domain representation,...
The Discrete Fourier Transform as a Frequency Response
The discrete frequency response H(k) of a Finite Impulse Response (FIR) filter is the Discrete Fourier Transform (DFT) of its impulse response h(n) [1]. So, if we can find H(k) by whatever method, it should be identical to the DFT of h(n). In this article, we’ll find H(k) by using complex exponentials, and we’ll see that it is indeed identical to the DFT of h(n).
Consider the four-tap FIR filter in Figure 1, where each block labeled Ts represents a delay of one...
Errata for the book: 'Understanding Digital Signal Processing'
Errata 3rd Ed. International Version.pdfErrata 3rd Ed. International Version.pdfThis blog post provides, in one place, the errata for each of the many different Editions/Printings of my book Understanding Digital Signal Processing.
If you would like the errata for your copy of the book, merely scroll down and click on the appropriate red line below. For the American versions of the various Editions of the book you'll need to know the "Printing Number" of your copy of the...
Specifying the Maximum Amplifier Noise When Driving an ADC
I recently learned an interesting rule of thumb regarding the use of an amplifier to drive the input of an analog to digital converter (ADC). The rule of thumb describes how to specify the maximum allowable noise power of the amplifier [1].
The Problem Here's the situation for an ADC whose maximum analog input voltage range is –VRef to +VRef. If we drive an ADC's analog input with an sine wave whose peak amplitude is VP = VRef, the ADC's output signal to noise ratio is maximized. We'll...
60-Hz Noise and Baseline Drift Reduction in ECG Signal Processing
Electrocardiogram (ECG) signals are obtained by monitoring the electrical activity of the human heart for medical diagnostic purposes [1]. This blog describes a very efficient digital filter used to reduce both 60 Hz AC power line noise and unwanted signal baseline drift that often contaminate ECG signals.
PDF_HERE
We'll first describe the ECG noise reduction filter and then examine the filter's performance in a real-world ECG signal filtering example.Proposed ECG Noise Reduction Digital...
Two Easy Ways To Test Multistage CIC Decimation Filters
This blog presents two very easy ways to test the performance of multistage cascaded integrator-comb (CIC) decimation filters [1]. Anyone implementing CIC filters should take note of the following proposed CIC filter test methods.
Introduction
Figure 1 presents a multistage decimate by D CIC filter where the number of stages is S = 3. The '↓D' operation represents downsampling by integer D (discard all but every Dth sample), n is the input time index, and m is the output time index.

















