Smaller DFTs from bigger DFTs
IntroductionLet's consider the following hypothetical situation: You have a sequence $x$ with $N/2$ points and a black box which can compute the DFT (Discrete Fourier Transform) of an $N$ point sequence. How will you use the black box to compute the $N/2$ point DFT of $x$? While the problem may appear to be a bit contrived, the answer(s) shed light on some basic yet insightful and useful properties of the DFT.
On a related note, the reverse problem of computing an $N$...
A Brief Introduction To Romberg Integration
This blog briefly describes a remarkable integration algorithm, called "Romberg integration." The algorithm is used in the field of numerical analysis but it's not so well-known in the world of DSP.
To show the power of Romberg integration, and to convince you to continue reading, consider the notion of estimating the area under the continuous x(t) = sin(t) curve based on the five x(n) samples represented by the dots in Figure 1.The results of performing a Trapezoidal Rule, a...
Use Matlab Function pwelch to Find Power Spectral Density – or Do It Yourself
In my last post, we saw that finding the spectrum of a signal requires several steps beyond computing the discrete Fourier transform (DFT)[1]. These include windowing the signal, taking the magnitude-squared of the DFT, and computing the vector of frequencies. The Matlab function pwelch [2] performs all these steps, and it also has the option to use DFT averaging to compute the so-called Welch power spectral density estimate [3,4].
In this article, I’ll present some...
Microprocessor Family Tree
Below is a little microprocessor history. Perhaps some of the ol' timers here will recognize a few of these integrated circuits. I have a special place in my heart for the Intel 8080 chip.
Image copied, without permission, from the now defunct Creative Computing magazine, Vol. 11, No. 6, June 1985.
A Markov View of the Phase Vocoder Part 2
IntroductionLast post we motivated the idea of viewing the classic phase vocoder as a Markov process. This was due to the fact that the input signal’s features are unknown to the computer, and the phase advancement for the next synthesis frame is entirely dependent on the phase advancement of the current frame. We will dive a bit deeper into this idea, and flesh out some details which we left untouched last week. This includes the effect our discrete Fourier transform has on the...
A Markov View of the Phase Vocoder Part 1
IntroductionHello! This is my first post on dsprelated.com. I have a blog that I run on my website, http://www.christianyostdsp.com. In order to engage with the larger DSP community, I'd like to occasionally post my more engineering heavy writing here and get your thoughts.
Today we will look at the phase vocoder from a different angle by bringing some probability into the discussion. This is the first part in a short series. Future posts will expand further upon the ideas...
Evaluate Window Functions for the Discrete Fourier Transform
The Discrete Fourier Transform (DFT) operates on a finite length time sequence to compute its spectrum. For a continuous signal like a sinewave, you need to capture a segment of the signal in order to perform the DFT. Usually, you also need to apply a window function to the captured signal before taking the DFT [1 - 3]. There are many different window functions and each produces a different approximation of the spectrum. In this post, we’ll present Matlab code that...
Feedback Controllers - Making Hardware with Firmware. Part 10. DSP/FPGAs Behaving Irrationally
This article will look at a design approach for feedback controllers featuring low-latency "irrational" characteristics to enable the creation of physical components such as transmission lines. Some thought will also be given as to the capabilities of the currently utilized Intel Cyclone V, the new Cyclone 10 GX and the upcoming Xilinx Versal floating-point FPGAs/ACAPs.
Fig 1. Making a Transmission Line, with the Circuit Emulator
Additional...
Polar Coding Notes: A Simple Proof
For any B-DMC $W$, the channels $\{W_N^{(i)}\}$ polarize in the sense that, for any fixed $\delta \in (0, 1)$, as $N$ goes to infinity through powers of two, the fraction of indices $i \in \{1, \dots, N\}$ for which $I(W_N^{(i)}) \in (1 − \delta, 1]$ goes to $I(W)$ and the fraction for which $I(W_N^{(i)}) \in [0, \delta)$ goes to $1−I(W)^{[1]}$.
Mrs. Gerber’s Lemma
Mrs. Gerber’s Lemma provides a lower bound on the entropy of the modulo-$2$ sum of two binary random...
Polar Coding Notes: Channel Combining and Channel Splitting
Channel Combining
Channel combining is a step that combines copies of a given B-DMC $W$ in a recursive manner to produce a vector channel $W_N : {\cal X}^N \to {\cal Y}^N$, where $N$ can be any power of two, $N=2^n, n\le0^{[1]}$.
The notation $u_1^N$ as shorthand for denoting a row vector $(u_1, \dots , u_N)$.
The vector channel $W_N$ is the virtual channel between the input sequence $u_1^N$ to a linear encoder and the output sequence $y^N_1$ of $N$...
Linear Feedback Shift Registers for the Uninitiated, Part XV: Error Detection and Correction
Last time, we talked about Gold codes, a specially-constructed set of pseudorandom bit sequences (PRBS) with low mutual cross-correlation, which are used in many spread-spectrum communications systems, including the Global Positioning System.
This time we are wading into the field of error detection and correction, in particular CRCs and Hamming codes.
Ernie, You Have a Banana in Your EarI have had a really really tough time writing this article. I like the...
Design study: 1:64 interpolating pulse shaping FIR
This article is the documentation to a code snippet that originated from a discussion on comp.dsp.
The task is to design a root-raised cosine filter with a rolloff of a=0.15 that interpolates to 64x the symbol rate at the input.
The code snippet shows a solution that is relatively straightforward to design and achieves reasonably good efficiency using only FIR filters.
Motivation: “simple solutions?”Linear Feedback Shift Registers for the Uninitiated, Part XIV: Gold Codes
Last time we looked at some techniques using LFSR output for system identification, making use of the peculiar autocorrelation properties of pseudorandom bit sequences (PRBS) derived from an LFSR.
This time we’re going to jump back to the field of communications, to look at an invention called Gold codes and why a single maximum-length PRBS isn’t enough to save the world using spread-spectrum technology. We have to cover two little side discussions before we can get into Gold...
Specifying the Maximum Amplifier Noise When Driving an ADC
I recently learned an interesting rule of thumb regarding the use of an amplifier to drive the input of an analog to digital converter (ADC). The rule of thumb describes how to specify the maximum allowable noise power of the amplifier [1].
The Problem Here's the situation for an ADC whose maximum analog input voltage range is –VRef to +VRef. If we drive an ADC's analog input with an sine wave whose peak amplitude is VP = VRef, the ADC's output signal to noise ratio is maximized. We'll...
The Discrete Fourier Transform and the Need for Window Functions
The Discrete Fourier Transform (DFT) is used to find the frequency spectrum of a discrete-time signal. A computationally efficient version called the Fast Fourier Transform (FFT) is normally used to calculate the DFT. But, as many have found to their dismay, the FFT, when used alone, usually does not provide an accurate spectrum. The reason is a phenomenon called spectral leakage.
Spectral leakage can be reduced drastically by using a window function in conjunction...
Add the Hilbert Transformer to Your DSP Toolkit, Part 2
In this part, I’ll show how to design a Hilbert Transformer using the coefficients of a half-band filter as a starting point, which turns out to be remarkably simple. I’ll also show how a half-band filter can be synthesized using the Matlab function firpm, which employs the Parks-McClellan algorithm.
A half-band filter is a type of lowpass, even-symmetric FIR filter having an odd number of taps, with the even-numbered taps (except for the main tap) equal to zero. This...
Pulse Shaping in Single-Carrier Communication Systems
Some common conceptual hurdles for beginning communications engineers have to do with "Pulse Shaping" or the closely-related, even synonymous, topics of "matched filtering", "Nyquist filtering", "Nyquist pulse", "pulse filtering", "spectral shaping", etc. Some of the confusion comes from the use of terms like "matched filter" which has a broader meaning in the more general field of signal processing or detection theory. Likewise "Raised Cosine" has a different meaning or application in this...
Polar Coding Notes: Channel Combining and Channel Splitting
Channel Combining
Channel combining is a step that combines copies of a given B-DMC $W$ in a recursive manner to produce a vector channel $W_N : {\cal X}^N \to {\cal Y}^N$, where $N$ can be any power of two, $N=2^n, n\le0^{[1]}$.
The notation $u_1^N$ as shorthand for denoting a row vector $(u_1, \dots , u_N)$.
The vector channel $W_N$ is the virtual channel between the input sequence $u_1^N$ to a linear encoder and the output sequence $y^N_1$ of $N$...
The Exponential Nature of the Complex Unit Circle
IntroductionThis is an article to hopefully give an understanding to Euler's magnificent equation:
$$ e^{i\theta} = cos( \theta ) + i \cdot sin( \theta ) $$
This equation is usually proved using the Taylor series expansion for the given functions, but this approach fails to give an understanding to the equation and the ramification for the behavior of complex numbers. Instead an intuitive approach is taken that culminates in a graphical understanding of the equation.
Complex...The Discrete Fourier Transform as a Frequency Response
The discrete frequency response H(k) of a Finite Impulse Response (FIR) filter is the Discrete Fourier Transform (DFT) of its impulse response h(n) [1]. So, if we can find H(k) by whatever method, it should be identical to the DFT of h(n). In this article, we’ll find H(k) by using complex exponentials, and we’ll see that it is indeed identical to the DFT of h(n).
Consider the four-tap FIR filter in Figure 1, where each block labeled Ts represents a delay of one...
Design of an anti-aliasing filter for a DAC
Overview- Octaveforge / Matlab design script. Download: here
- weighted numerical optimization of Laplace-domain transfer function
- linear-phase design, optimizes vector error (magnitude and phase)
- design process calculates and corrects group delay internally
- includes sinc() response of the sample-and-hold stage in the ADC
- optionally includes multiplierless FIR filter
Digital-to-analog conversion connects digital...
An Astounding Digital Filter Design Application
I've recently encountered a digital filter design application that astonished me with its design flexibility, capability, and ease of use. The software is called the "ASN Filter Designer." After experimenting with a demo version of this filter design software I was so impressed that I simply had publicize it to the subscribers here on dsprelated.com.
What I Liked About the ASN Filter DesignerWith typical filter design software packages the user enters numerical values for the...
Compute the Frequency Response of a Multistage Decimator
Figure 1a shows the block diagram of a decimation-by-8 filter, consisting of a low-pass finite impulse response (FIR) filter followed by downsampling by 8 [1]. A more efficient version is shown in Figure 1b, which uses three cascaded decimate-by-two filters. This implementation has the advantages that only FIR 1 is sampled at the highest sample rate, and the total number of filter taps is lower.
The frequency response of the single-stage decimator before downsampling is just...
Spline interpolation
A cookbook recipe for segmented y=f(x) 3rd-order polynomial interpolation based on arbitrary input data. Includes Octave/Matlab design script and Verilog implementation example. Keywords: Spline, interpolation, function modeling, fixed point approximation, data fitting, Matlab, RTL, Verilog
IntroductionSplines describe a smooth function with a small number of parameters. They are well-known for example from vector drawing programs, or to define a "natural" movement path through given...
Canonic Signed Digit (CSD) Representation of Integers
In my last post I presented Matlab code to synthesize multiplierless FIR filters using Canonic Signed Digit (CSD) coefficients. I included a function dec2csd1.m (repeated here in Appendix A) to convert decimal integers to binary CSD values. Here I want to use that function to illustrate a few properties of CSD numbers.
In a binary signed-digit number system, we allow each binary digit to have one of the three values {0, 1, -1}. Thus, for example, the binary value 1 1...
Discrete Wavelet Transform Filter Bank Implementation (part 1)
UPDATE: Added graphs and code to explain the frequency division of the branches
The focus of this article is to briefly explain an implementation of this transform and several filter bank forms. Theoretical information about DWT can be found elsewhere.
First of all, a 'quick and dirty' simplified explanation of the differences between DFT and DWT:
The DWT (Discrete Wavelet Transform), simply put, is an operation that receives a signal as an input (a vector of data) and...
Correcting an Important Goertzel Filter Misconception
Recently I was on the Signal Processing Stack Exchange web site (a question and answer site for DSP people) and I read a posted question regarding Goertzel filters [1]. One of the subscribers posted a reply to the question by pointing interested readers to a Wikipedia web page discussing Goertzel filters [2]. I noticed the Wiki web site stated that a Goertzel filter:
"...is marginally stable and vulnerable tonumerical error accumulation when computed usinglow-precision arithmetic and...Should DSP Undergraduate Students Study z-Transform Regions of Convergence?
Not long ago I presented my 3-day DSP class to a group of engineers at Tektronix Inc. in Beaverton Oregon [1]. After I finished covering my material on IIR filters' z-plane pole locations and filter stability, one of the Tektronix engineers asked a question similar to:
"I noticed that you didn't discuss z-plane regions of convergence here. In my undergraduate DSP class we spent a lot of classroom and homework time on the ...
A Simple Complex Down-conversion Scheme
Recently I was experimenting with complex down-conversion schemes. That is, generating an analytic (complex) version, centered at zero Hz, of a real bandpass signal that was originally centered at ±fs/4 (one fourth the sample rate). I managed to obtain one such scheme that is computationally efficient, and it might be of some mild interest to you guys. The simple complex down-conversion scheme is shown in Figure 1(a).It works like this: say we have a real xR(n) input bandpass...
Data Types for Control & DSP
There's a lot of information out there on what data types to use for digital signal processing, but there's also a lot of confusion, so the topic bears repeating.
I recently posted an entry on PID control. In that article I glossed over the data types used by showing "double" in all of my example code. Numerically, this should work for most control problems, but it can be an extravagant use of processor resources. There ought to be a better way to determine what precision you need...



















