DSPRelated.com
Tutorials

A Quadrature Signals Tutorial: Complex, But Not Complicated

Rick Lyons April 12, 201364 comments

Introduction Quadrature signals are based on the notion of complex numbers and perhaps no other topic causes more heartache for newcomers to DSP than these numbers and their strange terminology of j operator, complex, imaginary, real, and orthogonal. If you're a little unsure of the physical meaning of complex numbers and the j = √-1 operator, don't feel bad because you're in good company. Why even Karl Gauss, one the world's greatest mathematicians, called the j-operator the "shadow of...


A Fixed-Point Introduction by Example

Christopher Felton April 25, 201122 comments
Introduction

The finite-word representation of fractional numbers is known as fixed-point.  Fixed-point is an interpretation of a 2's compliment number usually signed but not limited to sign representation.  It extends our finite-word length from a finite set of integers to a finite set of rational real numbers [1].  A fixed-point representation of a number consists of integer and fractional components.  The bit length is defined...


How the Cooley-Tukey FFT Algorithm Works | Part 4 - Twiddle Factors

Mark Newman December 2, 20244 comments

The beauty of the FFT algorithm is that it does the same thing over and over again. It treats every stage of the calculation in exactly the same way. However, this. “one-size-fits-all” approach, although elegant and simple, causes a problem. It misaligns samples and introduces phase distortions during each stage of the algorithm. To overcome this, we need Twiddle Factors, little phase correction factors that push things back into their correct positions before continuing onto the next stage.


The Discrete Fourier Transform of Symmetric Sequences

Neil Robertson December 8, 2024

Symmetric sequences arise often in digital signal processing. Examples include symmetric pulses, window functions, and the coefficients of most finite-impulse response (FIR) filters, not to mention the cosine function. Examining symmetric sequences can give us some insights into the Discrete Fourier Transform (DFT). An even-symmetric sequence is centered at n = 0 and xeven(n) = xeven(-n). The DFT of xeven(n) is real. Most often, signals we encounter start at n = 0, so they are not strictly speaking even-symmetric. We’ll look at the relationship between the DFT’s of such sequences and those of true even-symmetric sequences.